Some info on Sun And Saturn:
$E_{\odot} = 4\pi{}R_{\odot}^2\sigma{}T_{\odot}^4$
$E_{\odot} = 4*\pi{}*(695.508*10^6)^2*5.9703*10^-8*5777^4$
$= 3.88391*10^{26} W$
At Saturn, this energy is passing through a sphere with a radius of $R_{sphere}$, the distance between Saturn and the Sun, and the energy passing through each square metre of the sphere is given by
$Power density_\text{Rsphere} = \frac{E_{\odot}}{4\pi*R_\text{sphere}^2}$
$\text{Power density}_\text{Rsphere} = \frac{3.88391*10^{26}}{4*\pi*(9.6AU * 149.6*10^9m/AU)}$
$\text{Power density}_\text{Rsphere} = 2.152070365*10^{13}W/m^2$
$E_{absorbed} = \pi R_{saturn}^2*Energy_{Rsphere}$
$E_{absorbed} = \pi*(58232)^2*2.15207*10^{13}$
$E_{absorbed} = 2.2926*10^23km^2W$
$$\alpha$$
ReplyDelete