$$P_{saturn} = 4\pi R_{Saturn}^{2}\sigma T_{Saturn}^{4}$$
First calculate with T as 76K:
$$P_{Saturn}^{T=76K} = 4\pi×57500^2×5.6703*10^{−8}×(76)^4$$
$$ = 7.8596*10^{10} W$$
Now T as 93K:
$$P_{Saturn}^{T=93K} = 4\pi×57500^2×5.6703*10^{−8}×(93)^4$$
$$ = 1.7623*10^{11}W$$
We have our two powers one $P_{Saturn}^{T=93K}$ and one $P_{Saturn}^{T=76K}$ so now we find the difference:
$$P_{difference} = P_{Saturn}^{T=76K} - P_{Saturn}^{T=93K} = 9.7634*10^{10}W$$
So Saturn radiates 0.554 times the power that saturn absorbes by sun which increases the temp to 93K.
$\alpha$
ReplyDelete